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Multifractal Fourier spectra and power-law decay of correlations in random substitution sequences
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Binary symbolic sequences produced by randomly alternating substitution rules are considered. Exact ex-
pressions for the characteristics of autocorrelations and power spectra are derived. The decay of autocorrelation
function obeys the power law. The Fourier spectral measure is either absolutely continuous or a mixture of the
absolutely continuous and singular continuous components. For the latter case, the multifractal characteristics
of this measure are computed.
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Discrete patterngvortices, crystals, spins, nucleotides, doubles the length of the symbolic string. The process starts
etc) occur on a continuous background in almost every natuwith one letter and creates the infinite sequef&¢. In the
ral system. This makes such systems amenable to discretizétblogical context, this can be viewed as a toy model of
description, the ultimate step of which is the reduction to dinear growth: a cell divides into two, which divide again and
finite set of symbols, without restricting the generaliy. ~ so on. If there are only two kinds of cells, the process is a
For example, in nonlinear dynamics a common practice is téequence of binary substitutions. Without mutations, all cells
define the partition of the state space, assign labels to partbbey the same “built-in” division rule; the simplest example
tion cells, and mimic continuous evolution by a sequence ofs a duplicationA—AA. With random mutations allowed,
letters. In many important cases the resulting symbolic codsome of the divisions follow different rules, introducing local
is invariant under replacement of certain blocks of severaflisorder into the growing pattern.
letters by one letter. Such self-similar codes are recovered, To conclude on the nature of spectral measure, we use the
e.g., at the onset of chaos through the period-doubling scexutocorrelation C(r):((§j§j+r)—<§j>2)/(<§jz>—<§j>2)
nario [2,3], quasiperiodicity{4], or homoclinic bifurcations where average is taken over the positjoim the string. In
[5]. In a wider context, self-similar symbolic sequences standystems with discrete Fourier spect@(r) displays repeti-
behind many phenomena in physics of critical states. Ofteftive peaks: if dynamics is periodic, peaks are located at the
exact similarity is marred by imperfections caused by vari-multiples of period and have unit height; in case of quasi-
ous reasons, from the action noise to finite-size effects angeriodicity, the highest peaks correspond to rational approxi-
influence of the boundaries, which are not necessarily commations to the rotation number, and their height tends to 1. If
patible with self-similar patterns. the spectrum is absolutely continuo®(r) decays. Auto-

Inversely, symbolic codes are unfolded from a single ini-correlation of the Thue-Morse sequence has a typical pattern
tial symbol by repeated substitutiofigflations, which re-  of a system with purely singular power spedifig. 1(a)] it
place each letter by the prescribed block. Viewed as dynamis built around a log-periodic lattice of moderate peaks
cal systems, deterministic substitution sequences have lor@(3x 2")=—C(2")=1/3. Another tool is the integrated au-
been an object of intensive studigg1]. On assigning nu- tocorrelation Cint(t)5t7122=ocz(7); the decay rate of
merical values to letters, a symbolic string turns into a timec, (t) yields the correlation dimensioB, of the spectral
series and can be characterized through entropies, Fourigheasure: fot large, Ci(t) ~t~°2 [10].
spectra, correlation functions, etc. For periodic and quasi- We start with two inflation rules that randomly alternate.
periodic sequences the power spectrum is a set of disérete At each individual place the replacing pattern is chosen
peaks; spectra of chaotic sequences are absolutely contingmong two candidates: with probabilip¢w.p.p) the symbol

ous with respect to the Lebesgue measure. One of the clag duplicated and with probability 1p-the complementary
sical substitution sequences, the Thue-Morse ¢@d pro-  symbol is written after it,

duced by the action of a substitutigf~ga on a two-letter
alphabet, is neither periodic nor chaotic; accordingly, its 1

power spectrum is neither discrete nor absolutely continuous
but was proved to be singular continuoi®: the spectral
measure is supported by the fractal set.

C(7)

In this work, we introduce randomness into the substitu- [T ST S
tion process: for each symbol, the substitution pattern is cho- - 1=
sen among several candidates. We show how this leads toth | () } )
power-law decay of correlations; for a class of SUCh Se-5 o[l bupivpiririrsrens go;ﬂﬂm—»
guences, the Fourier spectrum is a multifractal mixture of :
absolutely continuous and singular parts. Ao BT AT T A ""1"32"-“;‘ T R—T-

We restrict ourselves to substitutions in which the alpha-
bet is binary, all letters are updated simultaneously, and each FIG. 1. Autocorrelation function for the substitutigh). (a) p
one is replaced by two letters, so that one global update-0 (Thue-Morse sequengeb) p=0.05,(c) p=0.9.
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The rule for each letter is chosen independently of the D°° Dol
choices made elsewhere. Deterministic case0 yields the o s}/ \

Thue-Morse code; the trivial opposite limit=1 results in
repetition of one symbol. Fqu+# 0,1 the statistical treatment

is required; statements below refer to the expectations of the 020
corresponding values and assume averaging over ensembles
of infinite symbolic strings. 0 0 Po 05 Pt 1

Assigning numerical values to symbolse., A=—-B p
=1) and demanding invariance of the averaged products ) .
<§j §j+7> with respect to inflatior(1), we obtain two recur- FIG. 2. Dep(_e_ndence of fractal dimensions of the spectral mea-
rent relations for the autocorrelation function, sure on probabilitp.

C2n =kl @ o112 ®

C(27+1)=kJC(7)+C(7+1)],
Since forp<<0.061 23 and fop>0.840 79,D,(p) is smaller
k=1—2 2 —p_ E than 1, the spectral measure in these intervalg isffractal
e pP+2p%  ke=p— 3, : : :
2 or, at least, includes a singular componéfig. 2).
. . o . To get a better idea of the distribution of spectral measure
which, together with the “initial condition” as a function op, consider dynamics of finite-length Fourier
C(1)=(2p—1)/(3+4p—4p?), sumsSn(w)=2‘“|Eﬁn:1§kexp627rwk)|2 under the increase
of n. Due to periodicity, analysis can be restricted to the
determineC(7) for any 7. For p#0,1 the prefactoke in the interval O<w<1. For the absolutely continuous spectrum,
first of Egs.(2) lies between 0 and 1; hence, autocorrelationS,,_..(w) converges to a bounded curve. Pointwise diver-
decays. The highest peaks obey the power |@{r)|~7°  gence ofS,(w) indicates presence of singularities in the
with k=In(1—2p+2p?/In2. Forp<1/2 the second prefactor spectral measure. For the pure-point measSye,.(w) van-
Ko is negative and the decay is oscillatgfsig. 1(b)]; for p  ishes everywhere outside the countable set of points; in these

>1/2 the values of2(7) stay positive[Fig. 1(c)]. points, which correspond té& peaks in the spectrung,
The relationg2) allow us to determine the decay rate of diverges and the rati§, . /S, tends to 2.
the integrated autocorrelatio@;,;. The evolution of the For the substitutiorfl), the Fourier sums are interrelated
sums by the functional equation
G G Spea(w)=2p—2p?+[1-2p+2p?
U= 2 CX7), W,= X C(nC(r+1) (3

7=2n 7=2n —(1-2p)cos 2rw]S,(2w) 7

is governed by recurrent relations with the initial conditionSy=1.

At p=0 this givesS, ;1(w)=(1—-co0s Zrw) S,(2w). The
sumS,(w) vanishes aw=m/2""*, m=0,1,2 .... Theval-
ues of o with the highest local growth ratey,.y
=S, 1(w)/S(w) lie at w=m/(3x2"1); m=1,...,3
Whereg“n:[C(l)]z(kg—l)kg”. If U, ande as functions inil—l; since Ymax— 1—COS 2r/3=3/2<2, the hlghest
of n do not decrease, the terms with in Egs. (4) can be peaks grow slower than th& peaks would do. Numerically,
neglected, and for large values ofboth sums(3) are pro- the multifractal spectral measure of the Thue-Morse se-

portional to\", where is the larger root of the quadratic Uence was analyzed [a1]; exact expressions for the gen-
equation eralized dimensions were derived[it2].

Underp# 0,1 the factor befor&,(2w) in Eq.(7) is posi-
tive. Hence S, 1(w)>2p—2p2>0, and the absolutely con-

Un+1:(kg+2kg)un+2kgwn+k(2)§nv

Wit 1=2KKo(Up+Wp) +Kekoly, (4)

N?—| 4p*—4p’+4p?—2p+ 3N tinuous part is present in the power spectrum.
The curveS,(w), typical for smallp (here,p=0.1, n
—(1-2p)(2p%-2p+1)3=0. (5) =11) is plotted in Fig. 8). For p<1/2, the ratey,,,, equals

2p%—3p+3/2 and is attained at the same valuesoads for
Accordingly, the decay of the integrated autocorrelationthe Thue-Morse code; the highest peak for rallies at
Cin(t) is described by the power law with the exponent=1/3. Presence of the dense set of singularities is guaranteed
max(In\/In2—1,—1). This yields the correlation dimension if y,>>1; absence of the discrete component is ensured by
of the spectral measure, Ymax<2. The latter inequality holds for ap, and from the
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FIG. 3. Finite-length approximationS,() to spectral curves. !
(& p=0.1,n=11; (b) p=0.9, n=11.
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former it follows that for p<p,=(3—15)/2=0.190. ..
the power spectrum is a mixture of absolutely continuous

and singular continuous components. To the support of the o+
latter belongs the disjoint continuum @f values, which,
written in the binary notation, contains the infinite number of
sufficiently long segments--101010101-- .

When p exceeds 1/2, the picture is differefiig. 3(b)].
NOow ymax €quals D? and is reached aw=m/2""1m
=0,1,2 .... For p>p,=2/2=0.707- , the inequalities

tra of singularities.

FIG. 4. Multifractal characteristics of the spectral measure of
substitution(1). (a),(b) Generalized fractal dimensions),(d) spec-

For 0<p<p,, as shown above,yma=2p>—3p+3/2;

1<yma<2 are fulfilled, and the power spectrum includes ahencquﬂw—>Dw=1—|n(2p2—3p+3/2)/|n 2. In the inter-

dense set of singularities; the highest peak for eatibs at

val p<p<1, the rate yn equals 2? therefore,

»=0. The background of the spectrum is formed by thep_——2 Inp/in2. Numerically found dependencié, for
continuous component, which obeys a power law: for theseyeral values ob are plotted in Figs. @) and 4b).

nonsingular small values aé,

The dependence(q) yields the spectrum of singularities

f(a) [14]: @=d7/dqandf(a)=qa— 7. The presence of the

Sn (w)~w7172|np/|n2
— 0 .

®)

continuous component makes the distribution, in terms of

[11], “half a multifractal”: the curvef(a) has only an as-

Accordingly, forp,<p<1 the spectrum is again a mixture of ¢ending branctjFigs. 4c) and 4d)]. For eachp, the values
absolutely continuous and singular components. The fract@f « lie in the range D.,1) (in the exceptional case of

support of the latter includes the continuum ef values

purely singular continuous spectrum @t 0, the right bor-

whose binary expansions contain infinitely many segment§er reachesy=2 [11]). With increase ofp from zero, this

For the values op betweenp, andp;, the power spec-
trum contains no singularities; it is absolutely continuous. In
the simplest case gbp=1/2 when substitutions in Edl)
have equal probabilities, Eq7) results inS,(w)=1: the
spectral measure is uniform. According to Ef), the auto-

correlationC(7) in this case vanishes identically. AA

For 0<p<py and for p;<p<1 the distribution of the AB
spectral measure is multifractal. The formalism of multifrac- A— BA
tal analysis[13,14] has been adapted for Fourier spectra in BB

[11,15: the range of values ob between 0 and 1 is parti-
tioned into the boxes of the sizg and the partition function
for a realq is introduced asU(q,s)ziil’jlp?, wherep; is

the probability to locate the measure in tith box. Since

spectral measure itself is not explicitly available, one canuse C(27)=KC(7),

as approximations the finite-length sugg »); as shown in
[12], the refinement of the partition should be accompanied
by the increase ofi. Assuming the scalingJ(q,&)~&™ 9,

W.p. p; BB
W.p. Ps - BA
W.p. P3 AB
W.p. P4, AA

range monotonically decreases andpat p, shrinks to a
point; up fromp; the range ofx regains the finite width.
Now consider random choice among all possible two-
letter words. Fix nonnegative; , p,, andp; so thatp,= 1—
p1—p2—p3=0, and inflate each symbol according to

W.p. Py
W.p. P2
W.p. Ps3
W.P. Ps.

©)

The values of the autocorrelation functi@(7) for the
substitution (9) are related through the recurrence

C(27+1)=K[C(7)+C(7+1)]

(10

with K= (p1—p4)?+(p2—p3)? and K,=(p1—Pa)*—(p2

) ) LT ) 2 . .
we arrive in the usual way at the definition of generalized—Pa)"- This, again, ensures the power-law decay of autocor-
dimensionsD,:Dy=(q— 1) 'r(q). Due to the presence of relation:|C(7)|~ 7"K/I"2 The correlation dimension of the

continuous background),=1 for g<1. For large positive

g, the partition function is dominated by the contribution of A is the larger root of

boxes in whichS,(w) grows with the ratey,,.,; accordingly,

N2—(2K2+ 2K Ko+ K2\ + 2K 3K ,=0.

spectral measure is given i, =min(1,1-In NIn 2), where

(11)

q In the case of “rare mutations” when one of the probabili-

DqﬂmE q_—l(l—ln ymaX/In 2)

011111-3
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the inequalityA> 1 (which, in turn, impliesD,<1) holds. “expansion-modification system,” the choice was made be-
Accordingly, the presence of the singular continuous compotween a duplication and a mutation to a complementary sym-
nent is typical for such situations. bol [26,27]. Compared to the substitutid®), such systems

Multifractal properties of the spectral measure can be reare reminiscent of the cagg=p;=0: when mutations are
covered from finite-length sun,(w) which, for the substi- rare, the power spectrum decays as“livith a~1.

tution (9), obey the recurrent relation Processes with long-range correlations are often explained
in terms of random walk§16—21], by means of squared
Shi1(@)=1=Ket (Kt 2K, €08 2rw) Sy(20) fluctuationF3(1) =((=!1}&)?) averaged over the positign

H 2 2a _ H
+(P1+Pa—Pa—Ps—2K,)C0s 2rw.  (12) !n the scaling depen.dendy (H~1 ; the valuea=1/2 is
interpreted as an attribute of a genuine noncorrelated random

If at least two of the probabilitiep; do not vanish, the spec- walk, whereasy>1/2 indicates the presence of correlations.
tral background is everywheréexcept, perhaps, atw  Calculation for Eq.(9) yields 2a=max(sgfip;+p,],2
=0,1/2) bounded away from zero. Hence, the absolutely+ 2 Injp;—p,//In2). Thereby, the criterion does not distin-
continuous component is present, and the power spectrum @ish substitutions withp; — p.|< J2/2 from random walk;
either purely absolutely continuous or mixed. in particular, all sequences with a big proportion of Thue-
The detailed analysis of the substituti(®) and the recur- Morse-like inflations(and slow correlation decajook from
rent relation(12) will be presented elsewhere. The cgee  this point of view as completely disordered.
=p,=0 has been considered above. Here we briefly com- Alternatively, in dynamics the degree of irregularity is
ment on two other combinations of two substitutions. Underusually expressed in terms of ergodic characteristics like
p1=p,=0 the alternating substitution rules are the Thue-mixing, which, in their turn, are related to spectral properties
Morse rule, and the “reordered Thue-Morse” rule. For each[1]. Analysis of observables built on two-letter words of in-
of them, taken alone, the Fourier spectrum is purely singulaflations(1) and(9) shows that corresponding dynamical sys-
continuous. As soon as they are mixed together, the absdems are neither mixing nor even weakly mixing. This means
lutely continuous component appears. In order for the spedhat, in spite of the continuous component in the Fourier
trum to be multifractal, probabilities of the substitutions spectrum, the actual level of disorder in the substitution se-
should strongly differ. Ifp=min(p,,p;) exceeds 0.03, the quences is relatively low.

dimensionD,, of the spectral measure equals 1. Bor1/2 Simple random substitution rules allow us to arrive at
—/6/6, the dimensiom.. turns into 1, and the power spec- explicit scaling laws and exact values of fractal dimensions.
trum is absolutely continuous. Corresponding characteristics of more realistic models can

In the opposite casp,=p;=0 each of two competing be reasonably close to these laws and values. In this respect,
rules produces the periodic symbolic sequence. Por itcan be noticed that the strongly pronounced peak exactly at
=min(py,ps)<p,=1/2— V212, spectral measure has a singu-the frequencyw=1/3 in Fig. 3a) (as well as in the power

larity at w=0; at smallw the power law holds, spectra of thg §ubstitutio«t9) with. dominating values of, .
or p3) is reminiscent of the “period-3” pattern recovered in
S w(w)~ o 172NA=2p)In2 (13)  the structure of correlation functions and mutual information

of the DNA[28,29.

Above py, the singularity is absent; the spectrum is abso-  As seen from our analysis, power-law decay of correla-
lutely continuous. o _ _ . tions does not necessarily imply that the spectral measure is
Summarizing, random combination of binary substitutionsmytifractal; however, in situations when one of the substi-
always leads to the power-law decay of autocorrelation angtion patterns is strongly preferred, presence of fractal com-
is, in many cases, a cause of singularities in the spectrgyonent is quite probable. To our knowledge, decomposition
measure. _ of spectral measure in processes with power-law correlations

The power-law correlation decafflong-range correla-  pas not yet received the proper attention. The presented re-

tions”) is abundant in natural processes, from physical sysgyits allow to expect the fingerprints of fractal power spectra
tems near critical point$16] to human walking[17] and  jn many of such processes.

standing 18], atmospheric variability19,20, and sequences

of nucleotides in the DNA21-25. A decade ago Li recog- | am grateful to A. Pikovsky, J. Kurths, M. Rosenblum, A.
nized that many properties of such processes were repréoliti, F. Moss, K. Kaneko, W. Ebeling, and J. Freund for
duced by randomly alternating substitutions; in hisfruitful discussions.
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