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Multifractal Fourier spectra and power-law decay of correlations in random substitution sequences
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Binary symbolic sequences produced by randomly alternating substitution rules are considered. Exact ex-
pressions for the characteristics of autocorrelations and power spectra are derived. The decay of autocorrelation
function obeys the power law. The Fourier spectral measure is either absolutely continuous or a mixture of the
absolutely continuous and singular continuous components. For the latter case, the multifractal characteristics
of this measure are computed.
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Discrete patterns~vortices, crystals, spins, nucleotide
etc.! occur on a continuous background in almost every na
ral system. This makes such systems amenable to discre
description, the ultimate step of which is the reduction to
finite set of symbols, without restricting the generality@1#.
For example, in nonlinear dynamics a common practice i
define the partition of the state space, assign labels to p
tion cells, and mimic continuous evolution by a sequence
letters. In many important cases the resulting symbolic c
is invariant under replacement of certain blocks of seve
letters by one letter. Such self-similar codes are recove
e.g., at the onset of chaos through the period-doubling
nario @2,3#, quasiperiodicity@4#, or homoclinic bifurcations
@5#. In a wider context, self-similar symbolic sequences sta
behind many phenomena in physics of critical states. O
exact similarity is marred by imperfections caused by va
ous reasons, from the action noise to finite-size effects
influence of the boundaries, which are not necessarily c
patible with self-similar patterns.

Inversely, symbolic codes are unfolded from a single i
tial symbol by repeated substitutions~inflations!, which re-
place each letter by the prescribed block. Viewed as dyna
cal systems, deterministic substitution sequences have
been an object of intensive studies@6,1#. On assigning nu-
merical values to letters, a symbolic string turns into a ti
series and can be characterized through entropies, Fo
spectra, correlation functions, etc. For periodic and qu
periodic sequences the power spectrum is a set of discred
peaks; spectra of chaotic sequences are absolutely con
ous with respect to the Lebesgue measure. One of the
sical substitution sequences, the Thue-Morse code@7,8# pro-
duced by the action of a substitution$B→BA

A→AB on a two-letter
alphabet, is neither periodic nor chaotic; accordingly,
power spectrum is neither discrete nor absolutely continuo
but was proved to be singular continuous@9#: the spectral
measure is supported by the fractal set.

In this work, we introduce randomness into the subst
tion process: for each symbol, the substitution pattern is c
sen among several candidates. We show how this leads t
power-law decay of correlations; for a class of such
quences, the Fourier spectrum is a multifractal mixture
absolutely continuous and singular parts.

We restrict ourselves to substitutions in which the alp
bet is binary, all letters are updated simultaneously, and e
one is replaced by two letters, so that one global upd
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doubles the length of the symbolic string. The process st
with one letter and creates the infinite sequence$j j%. In the
biological context, this can be viewed as a toy model
linear growth: a cell divides into two, which divide again an
so on. If there are only two kinds of cells, the process i
sequence of binary substitutions. Without mutations, all c
obey the same ‘‘built-in’’ division rule; the simplest examp
is a duplicationA→AA. With random mutations allowed
some of the divisions follow different rules, introducing loc
disorder into the growing pattern.

To conclude on the nature of spectral measure, we use
autocorrelation C(t)5(^j jj j 1t&2^j j&

2)/(^j j
2&2^j j&

2)
where average is taken over the positionj in the string. In
systems with discrete Fourier spectra,C(t) displays repeti-
tive peaks: if dynamics is periodic, peaks are located at
multiples of period and have unit height; in case of qua
periodicity, the highest peaks correspond to rational appro
mations to the rotation number, and their height tends to 1
the spectrum is absolutely continuous,C(t) decays. Auto-
correlation of the Thue-Morse sequence has a typical pat
of a system with purely singular power spectra@Fig. 1~a!# it
is built around a log-periodic lattice of moderate pea
C(332n)52C(2n)51/3. Another tool is the integrated au
tocorrelation Cint(t)[t21(t50

t C2(t); the decay rate of
Cint(t) yields the correlation dimensionD2 of the spectral
measure: fort large,Cint(t);t2D2 @10#.

We start with two inflation rules that randomly alternat
At each individual place the replacing pattern is chos
among two candidates: with probabilityp(w.p.p) the symbol
is duplicated and with probability 1 –p the complementary
symbol is written after it,

FIG. 1. Autocorrelation function for the substitution~1!. ~a! p
50 ~Thue-Morse sequence!, ~b! p50.05, ~c! p50.9.
©2001 The American Physical Society11-1
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A→H AA w.p. p

AB w.p. 12p,
B→H BB w.p. p

BA w.p. 12p.
~1!

The rule for each letter is chosen independently of
choices made elsewhere. Deterministic casep50 yields the
Thue-Morse code; the trivial opposite limitp51 results in
repetition of one symbol. ForpÞ0,1 the statistical treatmen
is required; statements below refer to the expectations of
corresponding values and assume averaging over ensem
of infinite symbolic strings.

Assigning numerical values to symbols~i.e., A52B
51) and demanding invariance of the averaged produ
^j jj j 1t& with respect to inflation~1!, we obtain two recur-
rent relations for the autocorrelation function,

C~2t!5keC~t!, ~2!

C~2t11!5ko@C~t!1C~t11!#,

ke5122p12p2, ko5p2
1

2
,

which, together with the ‘‘initial condition’’

C~1!5~2p21!/~314p24p2!,

determineC(t) for anyt. For pÞ0,1 the prefactorke in the
first of Eqs.~2! lies between 0 and 1; hence, autocorrelat
decays. The highest peaks obey the power lawuC(t)u;tk

with k5 ln(122p12p2)/ln2. Forp,1/2 the second prefacto
ko is negative and the decay is oscillatory@Fig. 1~b!#; for p
.1/2 the values ofC(t) stay positive@Fig. 1~c!#.

The relations~2! allow us to determine the decay rate
the integrated autocorrelationCint . The evolution of the
sums

Un[ (
t52n

2n1121

C2~t!, Wn[ (
t52n

2n1121

C~t!C~t11! ~3!

is governed by recurrent relations

Un115~ke
212ko

2!Un12ko
2Wn1ko

2zn ,

Wn1152keko~Un1Wn!1kekozn , ~4!

wherezn5@C(1)#2(ke
221)ke

2n . If Un and Wn as functions
of n do not decrease, the terms withzn in Eqs. ~4! can be
neglected, and for large values ofn both sums~3! are pro-
portional toln, wherel is the larger root of the quadrati
equation

l22S 4p424p314p222p1
1

2Dl

2~122p!~2p222p11!350. ~5!

Accordingly, the decay of the integrated autocorrelat
Cint(t) is described by the power law with the expone
max(lnl/ln 221,21). This yields the correlation dimensio
of the spectral measure,
01111
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D25minS 1,12
ln l

ln 2D . ~6!

Since forp,0.061 23 and forp.0.840 79,D2(p) is smaller
than 1, the spectral measure in these intervals ofp is fractal
or, at least, includes a singular component~Fig. 2!.

To get a better idea of the distribution of spectral meas
as a function ofp, consider dynamics of finite-length Fourie

sums Sn(v)522nu(k51
2n

jk exp(i2pvk)u2 under the increase
of n. Due to periodicity, analysis can be restricted to t
interval 0<v,1. For the absolutely continuous spectru
Sn→`(v) converges to a bounded curve. Pointwise div
gence ofSn(v) indicates presence of singularities in th
spectral measure. For the pure-point measure,Sn→`(v) van-
ishes everywhere outside the countable set of points; in th
points, which correspond tod peaks in the spectrum,Sn
diverges and the ratioSn11 /Sn tends to 2.

For the substitution~1!, the Fourier sums are interrelate
by the functional equation

Sn11~v!52p22p21@122p12p2

2~122p!cos 2pv#Sn~2v! ~7!

with the initial conditionS051.
At p50 this givesSn11(v)5(12cos 2pv) Sn(2v). The

sumSn(v) vanishes atv5m/2n21, m50,1,2, . . . . Theval-
ues of v with the highest local growth rategmax
5Sn11(v)/Sn(v) lie at v5m/(332n21); m51, . . . ,3
32n2121; since gmax512cos 2p/353/2,2, the highest
peaks grow slower than thed peaks would do. Numerically
the multifractal spectral measure of the Thue-Morse
quence was analyzed in@11#; exact expressions for the gen
eralized dimensions were derived in@12#.

UnderpÞ0,1 the factor beforeSn(2v) in Eq. ~7! is posi-
tive. Hence,Sn11(v).2p22p2.0, and the absolutely con
tinuous part is present in the power spectrum.

The curveSn(v), typical for small p ~here, p50.1, n
511) is plotted in Fig. 3~a!. For p,1/2, the rategmax equals
2p223p13/2 and is attained at the same values ofv as for
the Thue-Morse code; the highest peak for alln lies at v
51/3. Presence of the dense set of singularities is guaran
if gmax.1; absence of the discrete component is ensured
gmax,2. The latter inequality holds for allp, and from the

FIG. 2. Dependence of fractal dimensions of the spectral m
sure on probabilityp.
1-2
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former it follows that for p,pb5(32A5)/250.1909 . . .
the power spectrum is a mixture of absolutely continuo
and singular continuous components. To the support of
latter belongs the disjoint continuum ofv values, which,
written in the binary notation, contains the infinite number
sufficiently long segments•••101010101••• .

When p exceeds 1/2, the picture is different@Fig. 3~b!#.
Now gmax equals 2p2 and is reached atv5m/2n21,m
50,1,2, . . . . For p.pt5A2/250.707••• , the inequalities
1,gmax,2 are fulfilled, and the power spectrum includes
dense set of singularities; the highest peak for eachn lies at
v50. The background of the spectrum is formed by t
continuous component, which obeys a power law: for
nonsingular small values ofv,

Sn→`~v!;v2122 ln p/ ln 2. ~8!

Accordingly, forpt,p,1 the spectrum is again a mixture o
absolutely continuous and singular components. The fra
support of the latter includes the continuum ofv values
whose binary expansions contain infinitely many segme
••• 0000 ••• .

For the values ofp betweenpb and pt , the power spec-
trum contains no singularities; it is absolutely continuous.
the simplest case ofp51/2 when substitutions in Eq.~1!
have equal probabilities, Eq.~7! results in Sn(v)51: the
spectral measure is uniform. According to Eq.~2!, the auto-
correlationC(t) in this case vanishes identically.

For 0,p,pb and for pt,p,1 the distribution of the
spectral measure is multifractal. The formalism of multifra
tal analysis@13,14# has been adapted for Fourier spectra
@11,15#: the range of values ofv between 0 and 1 is parti
tioned into the boxes of the size«, and the partition function
for a realq is introduced asU(q,«)5( i 51

1/« r i
q , wherer i is

the probability to locate the measure in thei th box. Since
spectral measure itself is not explicitly available, one can
as approximations the finite-length sumsSn(v); as shown in
@12#, the refinement of the partition should be accompan
by the increase ofn. Assuming the scalingU(q,«);«t(q),
we arrive in the usual way at the definition of generaliz
dimensionsDq :Dq5(q21)21t(q). Due to the presence o
continuous background,Dq51 for q<1. For large positive
q, the partition function is dominated by the contribution
boxes in whichSn(v) grows with the rategmax; accordingly,

Dq→`>
q

q21
~12 ln gmax/ln 2!.

FIG. 3. Finite-length approximationsSn(v) to spectral curves.
~a! p50.1, n511; ~b! p50.9, n511.
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For 0,p,pb , as shown above,gmax52p223p13/2;
henceDq→`→D`512 ln(2p223p13/2)/ln 2. In the inter-
val pt,p,1, the rate gmax equals 2p2; therefore,
D`522 ln p/ln 2. Numerically found dependenciesDq for
several values ofp are plotted in Figs. 4~a! and 4~b!.

The dependencet(q) yields the spectrum of singularitie
f (a) @14#: a5dt/dq and f (a)5qa2t. The presence of the
continuous component makes the distribution, in terms
@11#, ‘‘half a multifractal’’: the curve f (a) has only an as-
cending branch@Figs. 4~c! and 4~d!#. For eachp, the values
of a lie in the range (D`,1) ~in the exceptional case o
purely singular continuous spectrum atp50, the right bor-
der reachesa52 @11#!. With increase ofp from zero, this
range monotonically decreases and atp5pb shrinks to a
point; up frompt the range ofa regains the finite width.

Now consider random choice among all possible tw
letter words. Fix nonnegativep1 , p2, andp3 so thatp4[ 1–
p12p22p3>0, and inflate each symbol according to

A→5
AA w.p. p1

AB w.p. p2

BA w.p. p3

BB w.p. p4 ,

B→5
BB w.p. p1

BA w.p. p2

AB w.p. p3

AA w.p. p4 .

~9!

The values of the autocorrelation functionC(t) for the
substitution (9) are related through the recurrence

C~2t!5KeC~t!, C~2t11!5Ko@C~t!1C~t11!#
~10!

with Ke5(p12p4)21(p22p3)2 and 2Ko5(p12p4)22(p2
2p3)2. This, again, ensures the power-law decay of autoc
relation: uC(t)u;t ln Ke /ln 2. The correlation dimension of the
spectral measure is given byD25min(1,12 ln l/ln 2), where
l is the larger root of

l22~2Ko
212KeKo1Ke

2!l12Ke
3Ko50. ~11!

In the case of ‘‘rare mutations’’ when one of the probabi
tiespi is sufficiently close to 1, and the other three are sm

FIG. 4. Multifractal characteristics of the spectral measure
substitution~1!. ~a!,~b! Generalized fractal dimensions;~c!,~d! spec-
tra of singularities.
1-3
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MICHAEL A. ZAKS PHYSICAL REVIEW E 65 011111
the inequalityl. 1 ~which, in turn, impliesD2,1) holds.
Accordingly, the presence of the singular continuous com
nent is typical for such situations.

Multifractal properties of the spectral measure can be
covered from finite-length sumsSn(v) which, for the substi-
tution ~9!, obey the recurrent relation

Sn11~v!512Ke1~Ke12Ko cos 2pv!Sn~2v!

1~p11p42p22p322Ko!cos 2pv. ~12!

If at least two of the probabilitiespi do not vanish, the spec
tral background is everywhere~except, perhaps, atv
50,1/2) bounded away from zero. Hence, the absolu
continuous component is present, and the power spectru
either purely absolutely continuous or mixed.

The detailed analysis of the substitution~9! and the recur-
rent relation~12! will be presented elsewhere. The casep3
5p450 has been considered above. Here we briefly co
ment on two other combinations of two substitutions. Und
p15p450 the alternating substitution rules are the Thu
Morse rule, and the ‘‘reordered Thue-Morse’’ rule. For ea
of them, taken alone, the Fourier spectrum is purely sing
continuous. As soon as they are mixed together, the a
lutely continuous component appears. In order for the sp
trum to be multifractal, probabilities of the substitution
should strongly differ. Ifp[min(p2,p3) exceeds 0.03, the
dimensionD2 of the spectral measure equals 1. Forp.1/2
2A6/6, the dimensionD` turns into 1, and the power spec
trum is absolutely continuous.

In the opposite casep25p350 each of two competing
rules produces the periodic symbolic sequence. Fop
[min(p1,p4),pb51/22A2/2, spectral measure has a sing
larity at v50; at smallv the power law holds,

Sn→`~v!;v2122 ln(122p)/ ln 2. ~13!

Above pb the singularity is absent; the spectrum is ab
lutely continuous.

Summarizing, random combination of binary substitutio
always leads to the power-law decay of autocorrelation
is, in many cases, a cause of singularities in the spec
measure.

The power-law correlation decay~‘‘long-range correla-
tions’’! is abundant in natural processes, from physical s
tems near critical points@16# to human walking@17# and
standing@18#, atmospheric variability@19,20#, and sequence
of nucleotides in the DNA@21–25#. A decade ago Li recog
nized that many properties of such processes were re
duced by randomly alternating substitutions; in h
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‘‘expansion-modification system,’’ the choice was made b
tween a duplication and a mutation to a complementary s
bol @26,27#. Compared to the substitution~9!, such systems
are reminiscent of the casep25p350: when mutations are
rare, the power spectrum decays as 1/va with a;1.

Processes with long-range correlations are often expla
in terms of random walks@16–21#, by means of squared
fluctuationF2( l )5^(( j 11

j 1 l j i)
2& averaged over the positionj.

In the scaling dependencyF2( l ); l 2a, the valuea51/2 is
interpreted as an attribute of a genuine noncorrelated ran
walk, whereasa.1/2 indicates the presence of correlation
Calculation for Eq. ~9! yields 2a5max(sgn@p11p4#,2
12 lnup12p4u/ln 2). Thereby, the criterion does not distin
guish substitutions withup12p4u,A2/2 from random walk;
in particular, all sequences with a big proportion of Thu
Morse-like inflations~and slow correlation decay! look from
this point of view as completely disordered.

Alternatively, in dynamics the degree of irregularity
usually expressed in terms of ergodic characteristics
mixing, which, in their turn, are related to spectral propert
@1#. Analysis of observables built on two-letter words of i
flations~1! and~9! shows that corresponding dynamical sy
tems are neither mixing nor even weakly mixing. This mea
that, in spite of the continuous component in the Four
spectrum, the actual level of disorder in the substitution
quences is relatively low.

Simple random substitution rules allow us to arrive
explicit scaling laws and exact values of fractal dimensio
Corresponding characteristics of more realistic models
be reasonably close to these laws and values. In this res
it can be noticed that the strongly pronounced peak exactl
the frequencyv51/3 in Fig. 3~a! ~as well as in the power
spectra of the substitution~9! with dominating values ofp2
or p3) is reminiscent of the ‘‘period-3’’ pattern recovered
the structure of correlation functions and mutual informati
of the DNA @28,29#.

As seen from our analysis, power-law decay of corre
tions does not necessarily imply that the spectral measu
multifractal; however, in situations when one of the subs
tution patterns is strongly preferred, presence of fractal co
ponent is quite probable. To our knowledge, decomposit
of spectral measure in processes with power-law correlat
has not yet received the proper attention. The presented
sults allow to expect the fingerprints of fractal power spec
in many of such processes.

I am grateful to A. Pikovsky, J. Kurths, M. Rosenblum, A
Politi, F. Moss, K. Kaneko, W. Ebeling, and J. Freund f
fruitful discussions.
al

@1# R. Badii and A. Politi, Complexity ~Cambridge University

Press, Cambridge, 1997!.
@2# M.J. Feigenbaum, J. Stat. Phys.19, 25 ~1978!.
@3# B. Derrida, A. Gervois, and Y. Pomeau, J. Phys. A12, 269

~1979!.
@4# D. Randet al., Physica D8, 303 ~1982!.
@5# J.-M. Gambaudoet al., Phys. Rev. Lett.57, 925 ~1986!.
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